Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
EMBO Rep ; 25(2): 770-795, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182816

RESUMO

DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.


Assuntos
Adenina , Infecções Bacterianas , Receptor 2 Toll-Like , Animais , Camundongos , Adenina/análogos & derivados , Inflamação/genética , Metiltransferases/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
2.
mBio ; 14(5): e0222023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830807

RESUMO

IMPORTANCE: Bacillus and Clostridium spores cause food spoilage and disease because of spores' dormancy and resistance to microbicides. However, when spores "come back to life" in germination, their resistance properties are lost. Thus, understanding the mechanisms of spore germination could facilitate the development of "germinate to eradicate" strategies. One germination feature is the memory of a pulsed germinant stimulus leading to greater germination following a second pulse. Recent observations of increases in spore binding of the potentiometric dye thioflavin-T early in their germination of spores led to the suggestion that increasing electrochemical potential is how spores "remember" germinant pulses. However, new work finds no increased thioflavin-T binding in the physiological germination of Coatless spores or of intact spores germinating with dodecylamine, even though spore memory is seen in both cases. Thus, using thioflavin-T uptake by germinating spores to assess the involvement of electrochemical potential in memory of germinant exposure, as suggested recently, is questionable.


Assuntos
Bacillus , Esporos Bacterianos , Clostridium
3.
Front Microbiol ; 14: 1161604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113233

RESUMO

2Duf, named after the presence of a transmembrane (TM) Duf421 domain and a small Duf1657 domain in its sequence, is likely located in the inner membrane (IM) of spores in some Bacillus species carrying a transposon with an operon termed spoVA 2mob. These spores are known for their extreme resistance to wet heat, and 2Duf is believed to be the primary contributor to this trait. In this study, we found that the absence of YetF or YdfS, both Duf421 domain-containing proteins and found only in wild-type (wt) B. subtilis spores with YetF more abundant, leads to decreased resistance to wet heat and agents that can damage spore core components. The IM phospholipid compositions and core water and calcium-dipicolinic acid levels of YetF-deficient spores are similar to those of wt spores, but the deficiency could be restored by ectopic insertion of yetF, and overexpression of YetF increased wt spore resistance to wet heat. In addition, yetF and ydfS spores have decreased germination rates as individuals and populations with germinant receptor-dependent germinants and increased sensitivity to wet heat during germination, potentially due to damage to IM proteins. These data are consistent with a model in which YetF, YdfS and their homologs modify IM structure to reduce IM permeability and stabilize IM proteins against wet heat damage. Multiple yetF homologs are also present in other spore forming Bacilli and Clostridia, and even some asporogenous Firmicutes, but fewer in asporogenous species. The crystal structure of a YetF tetramer lacking the TM helices has been reported and features two distinct globular subdomains in each monomer. Sequence alignment and structure prediction suggest this fold is likely shared by other Duf421-containing proteins, including 2Duf. We have also identified naturally occurring 2duf homologs in some Bacilli and Clostridia species and in wt Bacillus cereus spores, but not in wt B. subtilis. Notably, the genomic organization around the 2duf gene in most of these species is similar to that in spoVA 2mob, suggesting that one of these species was the source of the genes on this operon in the extremely wet heat resistant spore formers.

4.
Small ; 19(9): e2205898, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534903

RESUMO

The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal-organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high-performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs-based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122216, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527970

RESUMO

Accurately, rapidly, and noninvasively identifying Bacillus spores can greatly contribute to controlling a plenty of infectious diseases. Laser tweezers Raman spectroscopy (LTRS) has confirmed to be a powerful tool for studying Bacillus spores at a single cell level. In this study, we constructed a single-cell Raman spectra dataset of living Bacillus spores and utilized deep learning approach to accurately, nondestructively identify Bacillus spores. The trained convolutional neural network (CNN) could efficiently extract tiny Raman spectra features of five spore species, and provide a prediction accuracy of specie identification as high as 100 %. Moreover, the spectral feature differences in three Raman bands at 660, 826, and 1017 cm-1 were confirmed to mostly contribute to producing such high prediction accuracy. In addition, optimal CNN model was employed to monitor and identify sporulation process at different metabolic phases in one growth cycle. The obtained average prediction accuracy of metabolic phase identification was approximately 88 %. It can be foreseen that, LTRS combined with CNN approach have great potential for accurately identifying spore species and metabolic phases at a single cell level, and can be gradually extended to perform identification for many unculturable bacteria growing in soil, water, and food.


Assuntos
Bacillus , Aprendizado Profundo , Pinças Ópticas , Análise Espectral Raman/métodos , Esporos Bacterianos/química
6.
Anal Chem ; 93(3): 1443-1450, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33369381

RESUMO

A prophage comprises a bacteriophage genome that has integrated into a host bacterium's DNA, which generally permits the cell to grow and divide normally. However, the prophage can be induced by various stresses, or induction can occur spontaneously. After prophage induction, viral replication and production of endolysins begin until the cell lyses and phage particles are released. However, the heterogeneity of prophage induction and lysis of individual cells in a population and the dynamics of a cell undergoing lysis by prophage induction have not been fully characterized. Here, we used Raman tweezers and live-cell phase-contrast microscopy to characterize the Raman spectral and cell length changes that occur during the lysis of individual Bacillus subtilis cells from spores that carry PBSX prophage during spores' germination, outgrowth, and then vegetative growth. Major findings of this work are as follows: (i) After addition of xylose to trigger prophage induction, the intensities of Raman spectral bands associated with nucleic acids of single cells in induced cultures gradually fell to zero, in contrast to the much smaller changes in protein band intensities and no changes in nucleic acid bands in uninduced cultures; (ii) the nucleic acid band intensities from an individual induced cell exhibited a rapid decrease, following a long lag period; (iii) after the addition of nutrient-rich medium with xylose, single spores underwent a long period (228 ± 41.4 min) for germination, outgrowth, and vegetative growth, followed by a short period of cell burst in 1.5 ± 0.8 min at a cell length of 8.2 ± 5.5 µm; (iv) the latent time (Tlatent) between the addition of xylose and the start of cell burst was heterogeneous in cell populations; however, the period (ΔTburst) from the latent time to the completion of cell lysis was quite small; (v) in a poor medium with l-alanine alone, addition of xylose caused prophage induction following spore germination but with longer Tlatent and ΔTburst times and without cell elongation; (vi) spontaneous prophage induction and lysis of individual cells from spores in a minimal nutrient medium were observed without xylose addition, and cell length prior to cell lysis was ∼4.1 µm, but spontaneous prophage induction was not observed in a rich medium; (vii) in a rich medium, addition of xylose at a time well after spore germination and outgrowth significantly shortened the average Tlatent time. The results of this study provide new insights into the heterogeneity and dynamics of lysis of individual B. subtilis cells derived from spores upon prophage induction.


Assuntos
Bacillus subtilis/citologia , Análise de Célula Única , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Microscopia de Contraste de Fase , Pinças Ópticas , Análise Espectral Raman , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo
7.
Yi Chuan ; 42(6): 536-547, 2020 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-32694112

RESUMO

Cardiac hypertrophy is a compensatory response that occurs as a result of increased hemodynamic requirement in peripheral tissues. In the process of cardiac hypertrophy, the expression of different types of genes in different stages is transcriptionally regulated by multiple-level physiological and pathological signals. Histone acetylation, as the most extensive post-translational modification, is closely controlled by the antagonistic histone acetyltransferases (HAT) and histone deacetylases (HDACs). Recent studies have shown that HDACs, as a family of enzymes that inhibit transcription and contain highly conserved deacetylase domains, regulate gene expression during cardiac hypertrophy through a variety of pathways. In this review, we mainly summarize the research progress on histone deacetylase in cardiac hypertrophy. By elucidating the role and molecular mechanism of different HDACs in cardiac hypertrophy, it provides new ideas for the treatment of different types of cardiac hypertrophy and heart failure, and molecular targets for new drug design.


Assuntos
Cardiomegalia , Histona Desacetilases , Acetilação , Cardiomegalia/genética , Histona Acetiltransferases , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
8.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5577-5588, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496095

RESUMO

Unraveling the genetic basis of medicinal plant metabolism and developmental traits is a long-standing goal for pharmacologists and plant biologists. This paper discusses the definition of molecular genetics of medicinal plants, which is an integrative discipline with medicinal plants as the research object. This discipline focuses on the heredity and variation of medicinal plants, and elucidates the relationship between the key traits of medicinal plants(active compounds, yield, resistance, etc.) and genotype, studies the structure and function, heredity and variation of medicinal plant genes mainly at molecular level, so as to reveal the molecular mechanisms of transmission, expression and regulation of genetic information of medicinal plants. Specifically, we emphasize on three major aspects of this discipline.(1)Individual and population genetics of medicinal plants, this part mainly highlights the genetic mechanism of the domestication, the individual genomics at the species level, and the formation of genetic diversity of medicinal plants.(2)Elucidation of biosynthetic pathways of active compounds and their evolutionary significance. This part summarizes the biosynthesis, diversity and molecular evolution of active compounds in medicinal plants.(3) Molecular mechanisms that shaping the key agronomic traits by internal and external factors. This part focuses on the accumulation and distribution of active compounds within plants and the regulation of metabolic network by environmental factors. Finally, we prospect the future direction of molecular genetics of medicinal plants based on the rapid development of multi-omics technology, as well as the application of molecular genetics in the future strategies to achieve conservation and breeding of medicinal plants and efficient biosynthesis of active compounds.


Assuntos
Plantas Medicinais , Vias Biossintéticas , Genômica , Biologia Molecular , Melhoramento Vegetal
9.
Anal Chem ; 92(1): 1326-1332, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793766

RESUMO

Confocal Raman microscopy is a powerful method for nondestructive and noninvasive detection of chemicals with high spatial resolution, but its long acquisition time hinders its applications in large-scale monitoring of fast dynamics. Here, we report the development of a compressive sensing technique for single-acquisition multifocal Raman spectroscopy, which is capable of improving the speed of conventional confocal Raman spectroscopy by 2-3 orders of magnitude. A sample is excited with a 2-D multifocus pattern, and the Raman scatterings from the multiple foci were projected onto the spectrometer's entrance in a 2-D array. The superimposed spectra within each row of the array were processed with an algorithm such that the spectra from the individual foci were retrieved in a single acquisition and with reduced noise. The performances of the developed technique were demonstrated by parallel Raman spectroscopy of multiple individual particles as well as by single-acquisition confocal Raman imaging of a large scale with high spatial resolution when combined with spatially sparse sampling. The technique is expected to find wide applications in investigating fast dynamics in large-scale biological systems.

10.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31061168

RESUMO

Bacillus spores incubated on plates for 2 to 98 days at 37°C had identical Ca-dipicolinic acid contents, exhibited identical viability on rich- or poor-medium plates, germinated identically in liquid with all germinants tested, identically returned to vegetative growth in rich or minimal medium, and exhibited essentially identical resistance to dry heat and similar resistance to UV radiation. However, the oldest spores had a lower core water content and significantly higher wet heat and NaOCl resistance. In addition, 47- and 98-day spores had lost >98% of intact 16S and 23S rRNA and 97 to 99% of almost all mRNAs, although minimal amounts of mononucleotides were generated in 91 days. Levels of 3-phosphoglyceric acid (3PGA) also fell 30 to 60% in the oldest spores, but how the 3PGA was lost is not clear. These results indicate that (i) translation of dormant spore mRNA is not essential for completion of spore germination, nor is protein synthesis from any mRNA; (ii) in sporulation for up to 91 days at 37°C, the RNA broken down generates minimal levels of mononucleotides; and (iii) the lengths of time that spores are incubated in sporulation medium should be considered when determining conditions for spore inactivation by wet heat, in particular, in using spores to test for the efficacy of sterilization regimens.IMPORTANCE We show that spores incubated at 37°C on sporulation plates for up to 98 days have lost almost all mRNAs and rRNAs, yet the aged spores germinated and outgrew as well as 2-day spores, and all these spores had identical viability. Thus, it is unlikely that spore mRNA, rRNA, or protein synthesis is important in spore germination. Spores incubated for 47 to 98 days also had much higher wet heat resistance than 2-day spores, suggesting that spore "age" should be considered in generating spores for tests of sterilization assurance. These data are the first to show complete survival of hydrated spores for ∼100 days, complementing published data showing dry-spore survival for years.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Temperatura Alta , Esporos Bacterianos/fisiologia , Água , Bacillus subtilis/genética , Bacillus subtilis/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Esporos Bacterianos/genética , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta
11.
NPJ Microgravity ; 4: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534587

RESUMO

Outer space is a challenging environment for all forms of life, and dormant spores of bacteria have been frequently used to study the survival of terrestrial life in a space journey. Previous work showed that outer space vacuum alone can kill bacterial spores. However, the responses and mechanisms of resistance of individual spores to space vacuum are unclear. Here, we examined spores' molecular changes under simulated space vacuum (~10-5 Pa) using micro-Raman spectroscopy and found that this vacuum did not cause significant denaturation of spore protein. Then, live-cell microscopy was developed to investigate the temporal events during germination, outgrowth, and growth of individual Bacillus spores. The results showed that after exposure to simulated space vacuum for 10 days, viability of spores of two Bacillus species was reduced up to 35%, but all spores retained their large Ca2+-dipicolinic acid depot. Some of the killed spores did not germinate, and the remaining germinated but did not proceed to vegetative growth. The vacuum treatment slowed spore germination, and changed average times of all major germination events. In addition, viable vacuum-treated spores exhibited much greater sensitivity than untreated spores to dry heat and hyperosmotic stress. Among spores' resistance mechanisms to high vacuum, DNA-protective α/ß-type small acid-soluble proteins, and non-homologous end joining and base excision repair of DNA played the most important roles, especially against multiple cycles of vacuum treatment. Overall, these results give new insight into individual spore's responses to space vacuum and provide new techniques for microorganism analysis at the single-cell level.

12.
Artigo em Inglês | MEDLINE | ID: mdl-29777931

RESUMO

Dolores Reyman et al. found the norharmane (9H-pyrido [3,4-b] indole) (NHM) and two acetic acid molecules can form the ternary complex (NHM-2A) in component solvent of dichloromethane and acetic acid via the hydrogen bond chain (J. Lumin. 2014, 148, 64). But the specific reaction details during this process were rarely reported. In this study, we will give an insight into the reasons which promote the occurrence of this reaction as well as its reaction order. The hydrogen bond enhancing behavior in first excited state (S1) is verified through the analysis of geometric configurations, infrared spectra, frontier molecular orbitals and potential energy curves. The absorption and fluorescence spectra we calculated are well coincident with the experimental results. Meanwhile, it is obvious that the hydrogen bond intensity is gradually enhanced from N1H2⋯O3, O4H5⋯O6 to O7H8⋯N9 by analyzing the reduced density gradient (RDG) isosurface. The hydrogen bond strengthening mechanism has been confirmed in which the hydrogen bond interaction acts as driving force for excited state proton transfer (ESPT) reaction. In order to provide a reliable description of the reaction energy profiles, we compare the barrier differences obtained by m062x and B3LYP methods. We might safely draw the conclusion that the multiple ESPT is a gradual process initiated by the proton transfer of O7H8⋯N9. And we further proof the ESPT process can be completed via the NHM-2A → NHM-2AS → NHM-2AD → NHM-2AT in S1 state. Theoretical research of NHM-2A has been carried out by density functional theory (DFT) and time-dependent density functional theory (TDDFT). It is worth noting that we predicted that the fluorescence at 400 nm observed in experiment is more likely to be emitted by NHM-2AS in S1 state.

13.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330188

RESUMO

DNA damage kills dry-heated spores of Bacillus subtilis, but dry-heat-treatment effects on spore germination and outgrowth have not been studied. This is important, since if dry-heat-killed spores germinate and undergo outgrowth, toxic proteins could be synthesized. Here, Raman spectroscopy and differential interference contrast microscopy were used to study germination and outgrowth of individual dry-heat-treated B. subtilis and Bacillus megaterium spores. The major findings in this work were as follows: (i) spores dry-heat-treated at 140°C for 20 min lost nearly all viability but retained their Ca2+-dipicolinic acid (CaDPA) depot; (ii) in most cases, dry-heat treatment increased the average times and variability of all major germination events in B. subtilis spore germination with nutrient germinants or CaDPA, and in one nutrient germination event with B. megaterium spores; (iii) B. subtilis spore germination with dodecylamine, which activates the spore CaDPA release channel, was unaffected by dry-heat treatment; (iv) these results indicate that dry-heat treatment likely damages spore proteins important in nutrient germinant recognition and cortex peptidoglycan hydrolysis, but not CaDPA release itself; and (v) analysis of single spores incubated on nutrient-rich agar showed that while dry-heat-treated spores that are dead can complete germination, they cannot proceed into outgrowth and thus not to vegetative growth. The results of this study provide new information on the effects of dry heat on bacterial spores and indicate that dry-heat sterilization regimens should produce spores that cannot outgrow and thus cannot synthesize potentially dangerous proteins.IMPORTANCE Much research has shown that high-temperature dry heat is a promising means for the inactivation of spores on medical devices and spacecraft decontamination. Dry heat is known to kill Bacillus subtilis spores by DNA damage. However, knowledge about the effects of dry-heat treatment on spore germination and outgrowth is limited, especially at the single spore level. In the current work, Raman spectroscopy and differential interference contrast microscopy were used to analyze CaDPA levels in and kinetics of nutrient- and non-nutrient germination of multiple individual dry-heat-treated B. subtilis and Bacillus megaterium spores that were largely dead. The outgrowth and subsequent cell division of these germinated but dead dry-heat-treated spores were also examined. The knowledge obtained in this study will help understand the effects of dry heat on spores both on Earth and in space, and indicates that dry heat can be safely used for sterilization purposes.


Assuntos
Bacillus megaterium/fisiologia , Bacillus subtilis/fisiologia , Temperatura Alta , Esporos Bacterianos/fisiologia , Esterilização , Cinética , Microscopia de Interferência , Análise Espectral Raman
14.
Front Microbiol ; 8: 2047, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118741

RESUMO

The Gram-positive spore-forming anaerobe Clostridium sporogenes is a significant cause of food spoilage, and it is also used as a surrogate for C. botulinum spores for testing the efficacy of commercial sterilization. C. sporogenes spores have also been proposed as a vector to deliver drugs to tumor cells for cancer treatments. Such an application of C. sporogenes spores requires their germination and return to life. In this study, Raman spectroscopy and differential interference contrast (DIC) microscopy were used to analyze the germination kinetics of multiple individual C. sporogenes wild-type and germination mutant spores. Most individual C. sporogenes spores germinated with L-alanine began slow leakage of ∼5% of their large Ca-dipicolinic acid (CaDPA) depot at T1, all transitioned to rapid CaDPA release at Tlag1, completed CaDPA release at Trelease, and finished peptidoglycan cortex hydrolysis at Tlys. T1, Tlag1, Trelease, and Tlys times for individual spores were heterogeneous, but ΔTrelease (Trelease - Tlag1) periods were relatively constant. However, variability in T1 (or Tlag1) times appeared to be the major reason for the heterogeneity between individual spores in their germination times. After Trelease, some spores also displayed another lag in rate of change in DIC image intensity before the start of a second obvious DIC image intensity decline of 25-30% at Tlag2 prior to Tlys. This has not been seen with spores of other species. Almost all C. sporogenes spores lacking the cortex-lytic enzyme (CLE) CwlJ spores exhibited a Tlag2 in L-alanine germination. Sublethal heat treatment potentiated C. sporogenes spore germination with L-alanine, primarily by shortening T1 times. Spores without the CLEs SleB or CwlJ exhibited greatly slowed germination with L-alanine, but spores lacking all germinant receptor proteins did not germinate with L-alanine. The absence of these various germination proteins also decreased but did not abolish germination with the non-GR-dependent germinants dodecylamine and CaDPA, but spores without CwlJ exhibited no germination with CaDPA. Finally, C. sporogenes spores displayed commitment in germination, but memory in GR-dependent germination was small, and less than the memory in Bacillus spore germination.

15.
Annu Rev Microbiol ; 71: 459-477, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28697670

RESUMO

Dormant Bacillales and Clostridiales spores begin to grow when small molecules (germinants) trigger germination, potentially leading to food spoilage or disease. Germination-specific proteins sense germinants, transport small molecules, and hydrolyze specific bonds in cortex peptidoglycan and specific proteins. Major events in germination include (a) germinant sensing; (b) commitment to germinate; (c) release of spores' depot of dipicolinic acid (DPA); (d) hydrolysis of spores' peptidoglycan cortex; and (e) spore core swelling and water uptake, cell wall peptidoglycan remodeling, and restoration of core protein and inner spore membrane lipid mobility. Germination is similar between Bacillales and Clostridiales, but some species differ in how germinants are sensed and how cortex hydrolysis and DPA release are triggered. Despite detailed knowledge of the proteins and signal transduction pathways involved in germination, precisely what some germination proteins do and how they do it remain unclear.


Assuntos
Bacillales/crescimento & desenvolvimento , Clostridiales/crescimento & desenvolvimento , Peptidoglicano/metabolismo , Esporos/crescimento & desenvolvimento , Parede Celular/metabolismo , Fluidez de Membrana , Lipídeos de Membrana/metabolismo , Ácidos Picolínicos/metabolismo , Água/metabolismo
16.
Adv Mater ; 29(27)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28485032

RESUMO

Biological synapses store and process information simultaneously by tuning the connection between two neighboring neurons. Such functionality inspires the task of hardware implementation of neuromorphic computing systems. Ionic/electronic hybrid three-terminal memristive devices, in which the channel conductance can be modulated according to the history of applied voltage and current, provide a more promising way of emulating synapses by a substantial reduction in complexity and energy consumption. 2D van der Waals materials with single or few layers of crystal unit cells have been a widespread innovation in three-terminal electronic devices. However, less attention has been paid to 2D transition-metal oxides, which have good stability and technique compatibility. Here, nanoscale three-terminal memristive transistors based on quasi-2D α-phase molybdenum oxide (α-MoO3 ) to emulate biological synapses are presented. The essential synaptic behaviors, such as excitatory postsynaptic current, depression and potentiation of synaptic weight, and paired-pulse facilitation, as well as the transition of short-term plasticity to long-term potentiation, are demonstrated in the three-terminal devices. These results provide an insight into the potential application of 2D transition-metal oxides for synaptic devices with high scaling ability, low energy consumption, and high processing efficiency.

17.
Appl Opt ; 56(12): 3263-3269, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28430241

RESUMO

Bacillus thuringiensis (Bt) is the most widely used microbial insecticide. To clarify the mechanism of bacterial resistance to ethanol toxicity, the present study investigated the effects of 70% (v/v) ethanol at a moderate temperature (65°C) on Bt spore germination by single-cell Raman spectroscopy and differential interference contrast microscopy. We found that over 80% of Bt spores were inviable after 30 min of treatment. Moreover, ethanol treatment affected spore germination; the time for initiation of rapid calcium dipicolinate (CaDPA) release (i.e., lag time, Tlag), time taken for rapid CaDPA release (i.e., ΔTrelease), and time required for complete hydrolysis of the peptidoglycan cortex of spores (i.e., ΔTlys) were increased with longer treatment times. Alanine-initiated germination upon ethanol treatment for 30-90 min showed a 2- to 4-fold longer Tlag, 2- to 3.5-fold longer ΔTrelease, and ∼2-fold longer ΔTlys relative to the control. Dodecylamine-initiated germination treated for 15-30 min had 3- to 5-fold longer Tlag and 1.4- to 1.7-fold longer ΔTrelease than the control. Germination induced by exogenous CaDPA was observed only in a small fraction of spores treated with ethanol for 5 min. Single-cell Raman spectroscopy revealed that more than 52% of spores lost CaDPA after 30 min of ethanol treatment; these showed reductions in the intensity of 1280 and 1652 cm-1 bands (corresponding to protein α-helical structure) and increases in that of 1245 and 1665 cm-1 bands (attributed to irregularities in protein structure). These results indicate that CaDPA in the core of Bt spores confers resistance to ethanol, and that damage to the spore inner membrane by ethanol treatment results in CaDPA leakage. Additionally, moderate-temperature ethanol treatment and consequent denaturation of germination-related proteins affected spore germination, specifically by inactivating the cortex-lytic enzyme CwlJ. Our findings provide a theoretical basis for the development of more effective methods for killing spore-forming bacteria; microscopy imaging and Raman spectroscopy can provide novel insight into the effects of chemical agents on microbial cells.


Assuntos
Anti-Infecciosos Locais/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Etanol/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Alanina/farmacologia , Aminas/farmacologia , Bacillus thuringiensis/fisiologia , Farmacorresistência Bacteriana , Cinética , Microscopia de Interferência , Ácidos Picolínicos/metabolismo , Ácidos Picolínicos/farmacologia , Desnaturação Proteica , Análise Espectral Raman/métodos , Esporos Bacterianos/fisiologia , Fatores de Tempo
18.
Artigo em Inglês | MEDLINE | ID: mdl-28433832

RESUMO

The symmetrical structures 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol (BBTD) can take shape two intramolecular hydrogen bonds in chloroform. In order to research the molecular dynamic behavior of BBTD upon photo-induced process, we utilize density functional theory (DFT) and time-dependent density functional theory (TDDFT) to complete theoretical calculation. Through the comparison of bond length, bond angle, IR spectra, and frontier molecular orbitals between ground state (S0) and first excited state (S1), it clearly indicates that photoexcitation have slightly influence for intensity of hydrogen bond. For the sake of understanding the mechanism of excited state intramolecular proton transfer (ESIPT) of BBTD in chloroform, potential energy surfaces have been scanned along with the orientation of O1-H2 and O4-H5 in S0 and S1 state, respectively. A intrigued hydrogen bond dynamic phenomenon has been found that ESIPT of BBTD is not a synergetic double proton transfer process, but a stepwise single proton transfer process BBTD→BBTD-S→BBTD-D. Moreover, the proton transfer process of BBTD-S→BBTD-D is easier to occur than that of BBTD→BBTD-S in S1 state.

19.
Sci Rep ; 7: 42930, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211526

RESUMO

Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

20.
mBio ; 8(1)2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28096487

RESUMO

Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG), a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG's central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies. IMPORTANCE: The spore-forming bacterium Clostridium difficile is a leading cause of health care-associated infections. While a subset of antibiotics can treat C. difficile infections (CDIs), the primary determinant of CDI disease susceptibility is prior antibiotic exposure, since it reduces the colonization resistance conferred by a diverse microflora. Thus, therapies that minimize perturbations to the gut microbiome should be more effective at reducing CDIs and their recurrence, the main source of disease complications. Given that spore germination is essential for C. difficile to initiate infection and that C. difficile uses a unique pathway to initiate germination, methods that inhibit distinct elements of germination could selectively prevent C. difficile disease recurrence. Here, we identify GerG as a C. difficile-specific protein that controls the incorporation of germinant signaling proteins into spores. Since gerG mutant spores exhibit germination defects and are less responsive to germinant, GerG may represent a promising target for developing therapeutics against CDI.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/crescimento & desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento , Peptídeo Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA